WIMA DC-LINK HY

Metallized Polypropylene (PP) - Capacitors for Hybrid Drives. Capacitance 500 µF. Rated Voltage 450 VDC.

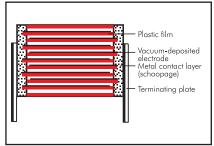
Special Features

- Very high volume/capacitance ratio
- Self-healing, internal safety disconnector
- Safe contact configuration by screwable plates
- Dry construction without electrolyte or oil
- Very low dissipation factor
- Negative capacitance change versus temperature
- Very low dielectric absorption
- According to RoHS 2011/65/EU
- Customer-specific capacitances or voltages on request

Typical Applications

As intermediate circuit capacitor e.g. in hybrid drives

Construction


Dielectric:

Polypropylene (PP) film

Capacitor electrodes:

Vacuum-deposited

Internal construction:

Encapsulation:

Solvent-resistant, flame-retardant plastic case with PU seal, UL 94 V-0

Terminations:

Tinned plates

Marking:

Colour: Black. Marking: Gold.

Electrical Data

Capacitance range:

500 µF

Rated voltage:

450 VDC

Capacitance tolerances:

 $\pm 20\%$, $\pm 10\%$, ($\pm 5\%$ available subject to special enquiry)

Operating temperature range:

-55° C to +85° C (hot spot ≤+110° C in combination with a heatsink)

Insulation resistance at +20° C:

 \geq 10000 sec (M $\Omega \times \mu$ F)

Measuring voltage: 100 V/1 min.

Dielectric loss factor tan δ_0 : 2 x 10⁻⁴

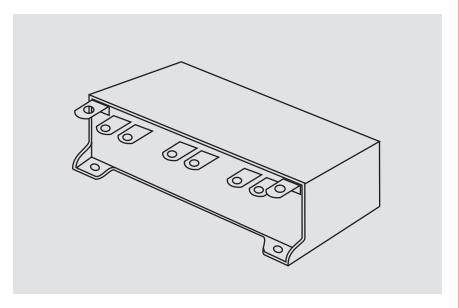
Test voltage: 1.3 U_r, 2sec Dielectric absorption: 0.05 %

Voltage derating:

A voltage derating factor of 1.35 % per K must be applied from +85° C for DC voltage.

Reliability:

Operational life $> 100\,000$ hours at 40° C Failue rate < 36 fit $10.75 \times U_r$ and 40° C1


Mounting Recommendation

Excessive mechanical strain, e.g. pressure or shock onto the capacitor body, is to be avoided during mounting and usage of the capacitors. When fixing the capacitor the screw torque is to be limited to max. 5 Nm.

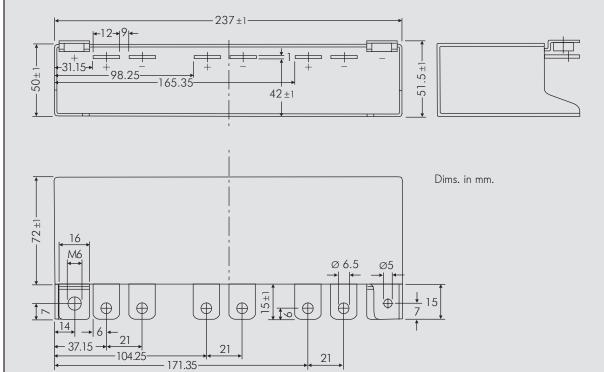
Packing

Transport-safe packing in cardboard boxes.

For further details and graphs please refer to Technical Information.

WIMA DC-LINK HY

Continuation


General Data

Capacitance	U _R	I _{max} A	I _{ms} * A	L _e nH	ESR* mΩ	Approx. weight	Part number
500 μ F	450 VDC	5000	120**	< 15	0.8**	1400	DCHYH06500JG00

^{*}f = 1kHz

Customized solutions can be realized on request

Part number	completion:		
Tolerance:	20 % = M		
	10% = K		
	5% = J		
Packing:	bulk = S		
Pin length:	none = 00		

Rights reserved to amend design data without prior notification.

^{**} General guide

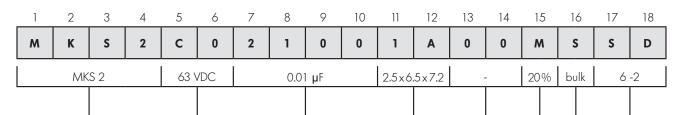
-WIMA Part Number System

A WIMA part number consists of 18 digits and is composed as follows:

Field 1 - 4: Type description

Field 5 - 6: Rated voltage

Field 7 - 10: Capacitance


Field 11 - 12: Size and PCM

Field 13 - 14: Version code (e.g. Snubber versions)

Field 15: Capacitance tolerance

Packing Field 16:

Field 17 - 18: Pin length (untaped)

Type description	on:	Rated voltage:	Capacitance:	Size:	Tolerance:
SMD-PET	= SMDT	50 VDC = B0	22 pF = 0022	$4.8 \times 3.3 \times 3$ Size 1812 = KA	$\pm 20\% = M$
SMD-PEN	= SMDN	63 VDC = C0	47 pF = 0047	$4.8 \times 3.3 \times 4$ Size 1812 = KB	$\pm 10\% = K$
SMD-PPS	= SMDI	100 VDC = D0	100 pF = 0100	$5.7 \times 5.1 \times 3.5$ Size $2220 = QA$	$\pm 5\% = J$
FKP 02	= FKPO	250 VDC = FO	150 pF = 0150	$5.7 \times 5.1 \times 4.5$ Size $2220 = QB$	$\pm 2.5\% = H$
MKS 02	=MKS0	400 VDC = G0	220 pF = 0220	$7.2 \times 6.1 \times 3$ Size 2824 = TA	$\pm 1\%$ = E
FKS 2	= FKS2	450 VDC = H0	330 pF = 0330	$7.2 \times 6.1 \times 5$ Size 2824 = TB	
FKP 2	= FKP2	520 VDC = H2	470 pF = 0470	$10.2 \times 7.6 \times 5$ Size $4030 = VA$	
FKS 3	= FKS3	600 VDC = 10	680 pF = 0680	$12.7 \times 10.2 \times 6$ Size $5040 = XA$	
FKP 3	= FKP 3	630 VDC = J0	1000 pF = 1100	$15.3 \times 13.7 \times 7$ Size $6054 = YA$	Packing:
MKS 2	=MKS2	700 VDC = KO	1500 pF = 1150	$2.5 \times 7 \times 4.6 \text{ PCM } 2.5 = 0B$	AMMO H16.5 $340 \times 340 = A$
MKP 2	=MKP2	800 VDC = 10	2200 pF = 1220	$3 \times 7.5 \times 4.6 \text{ PCM } 2.5 = 0 \text{C}$	AMMO H16.5 $490 \times 370 = B$
MKS 4	= MKS4	850 VDC = M0	3300 pF = 1330	$2.5 \times 6.5 \times 7.2 \text{ PCM} 5 = 1 \text{A}$	AMMO H18.5 $340 \times 340 = C$
MKP 4C	= MKPC	900 VDC = N0	4700 pF = 1470	$3 \times 7.5 \times 7.2 \text{ PCM} 5 = 1B$	AMMO H18.5 $490 \times 370 = D$
MKP 4	= MKP4	1000 VDC = O1	6800 pF = 1680	$2.5 \times 7 \times 10 \text{ PCM} 7.5 = 2A$	REEL H16.5 360 = F
MKP 10	=MKP1	1100 VDC = P0	$0.01 \mu F = 2100$	$3 \times 8.5 \times 10 \text{ PCM } 7.5 = 2B$	REEL H16.5 500 = H
FKP 1	= FKP1	1200 VDC = Q0	$0.022 \mu F = 2220$	$3 \times 9 \times 13 \text{ PCM } 10 = 3A$	REEL H18.5 360 = I
MKP-X2	=MKX2	1250 VDC = R0	$0.047 \mu F = 2470$	$ 4 \times 9 \times 13 \text{ PCM } 10 = 3C$	REEL H18.5 500 = J
MKP-X1 R	=MKX1	1500 VDC = S0	$0.1 \mu F = 3100$	$5 \times 11 \times 18 \text{ PCM } 15 = 4B$	ROLL H16.5 $= N$
MKP-Y2	=MKY2	1600 VDC = T0	$0.22 \mu F = 3220$	$6 \times 12.5 \times 18 \text{ PCM } 15 = 4 \text{ C}$	ROLL H18.5 = O
MP 3-X2	=MPX2	2000 VDC = U0	$0.47 \mu F = 3470$	$5 \times 14 \times 26.5 \text{ PCM } 22.5 = 5A$	BLISTER W12 180 = P
MP 3-X1	=MPX1	2500 VDC = V0	$1 \mu F = 4100$	$6 \times 15 \times 26.5 \text{ PCM } 22.5 = 5B$	BLISTER W12 330 $= Q$
MP 3-Y2	=MPY2	3000 VDC = W0	$2.2 \mu F = 4220$	$9 \times 19 \times 31.5 \text{ PCM } 27.5 = 6A$	BLISTER W16 330 $= R$
MP 3R-Y2	=MPRY	4000 VDC = X0	$4.7 \mu F = 4470$	$11 \times 21 \times 31.5 \text{ PCM } 27.5 = 6B$	BLISTER W24 330 $=$ T
MKP 4F	=MKPF	6000 VDC = Y0	$10 \mu F = 5100$	$9 \times 19 \times 41.5 \text{ PCM} 37.5 = 7A$	Bulk/TPS Standard = S
Snubber MKP	= SNMP	250 VAC = 0 W	$22 \mu F = 5220$	$11 \times 22 \times 41.5 \text{ PCM} 37.5 = 7B$	
Snubber FKP	= SNFP	275 VAC = 1 W	$47 \mu F = 5470$	$19 \times 31 \times 56$ PCM $48.5 = 8D$	
GTO MKP	= GTOM	300 VAC = 2W	$100 \mu F = 6100$	$25 \times 45 \times 57 \text{ PCM } 52.5 = 9D$	
DC-LINK MKP 3		305 VAC = AVV	$220 \mu F = 6220$	I	
DC-LINK MKP 4		350 VAC = BW	$1000 \mu F = 7100$		
DC-LINK MKP 4		$\begin{array}{ccc} 440 \text{ VAC} &= 4\text{VV} \\ 500 \text{ VAC} &= 7\text{VV} \end{array}$	$1500 \mu F = 7150$	Version code:	Pin longth (untarned)
DC-LINK MKP 5		500 VAC = 5VV			Pin length (untaped)
DC-LINK MKP 6	DCLC			Standard = 00	$3.5 \pm 0.5 = C9$

The data on this page is not complete and serves only to explain the part number system. Part number information is listed on the pages of the respective WIMA range.

Version A1

Version A1.1.1 = 1BVersion A2

= 1A

=2A

DC-LINK HC

DC-LINK HY

= DCHC

= DCHY

6 - 2 = SD $16 \pm 1 = P1$

Pin length (taped)